Source code for tecplot.data.nodemap

import itertools as it
import logging
import textwrap

from  contextlib import contextmanager
from ctypes import addressof, cast, c_int32, c_int64, c_void_p, POINTER

from ..tecutil import _tecutil, _tecutil_connector
from ..constant import *
from ..exception import *
from .. import session
from ..tecutil import array_to_str, lock, lock_attributes, filled_slice

log = logging.getLogger(__name__)


class Elementmap(c_void_p):
    """Nodemap reverse look-up."""
    def __init__(self, zone):
        self.zone = zone
        super().__init__(self._native_reference())

    @lock()
    def _native_reference(self):
        with self.zone.dataset.frame.activated():
            return _tecutil.DataNodeToElemMapGetReadableRef(self.zone.index + 1)

    def num_elements(self, node):
        return _tecutil.DataNodeToElemMapGetNumElems(self, node + 1)

    def element(self, node, offset):
        return _tecutil.DataNodeToElemMapGetElem(self, node + 1, offset + 1) - 1


[docs]@lock_attributes class Nodemap(c_void_p): r"""Connectivity list definition and control for classic FE zones. A nodemap holds the connectivity between nodes and elements for classic finite-element zones. It is nominally a two-dimensionaly array of shape :math:`(N_e, N_{npe})` where :math:`N_e` is the number of elements and :math:`N_{npe}` is the number of nodes per element. The nodemap interface has flat-array access through the `Nodemap.array` property as well as reverse look-up with `Nodemap.num_elements()` and `Nodemap.element()`. The nodemap behaves mostly like a two-dimensional array and can be treated as such:: >>> nodemap = dataset.zone('My Zone').nodemap >>> print('nodes in the first element:', nodemap[0]) nodes in the first element: [0, 1, 2, 3] >>> print(nodemap[:3]) [[0, 1, 2, 3], [2, 3, 4, 5], [4, 5, 6, 7]] >>> nodemap[0] = [6, 7, 8, 9] >>> print(nodemap[0]) [6, 7, 8, 9] Just for clarity, the nodemap indexing is by element first, then offset within that element:: >>> element = 6 >>> offset = 2 >>> node = nodemap[element][offset] >>> print(node) 21 Setting node indices must be done for an entire element because getting values out of the nodemap and into Python always creates a copy. For example, **this will not work**:: >>> nodemap = dataset.zone('My Zone').nodemap >>> # Trying to set the 3rd node of the element 10 >>> nodemap[10][2] = 5 # Error: nodemap[10] returns a copy To modify a single node in a nodemap, it is neccessary to do a round trip like so:: nodemap = dataset.zone('My Zone').nodemap >>> nodes = nodemap[10] >>> nodes[2] = 5 >>> nodemap[10] = nodes # OK: setting whole element at a time >>> print(nodemap[10]) [20, 21, 5, 22] The following script creates a quad of two triangles from scratch using the PyTecplot low-level data creation interface. The general steps are: 1. Setup the data 2. Create the tecplot dataset and variables 3. Create the zone 4. Set the node locations and connectivity lists 5. Set the (scalar) data 6. Write out data file 7. Adjust plot style and export image The data created looks like this: .. code-block:: none Node positions (x,y,z): (1,1,1) 3 / \ / \ (0,1,.5) 2-----1 (1,0,.5) \ / \ / 0 (0,0,0) Breaking up the two triangular elements, the faces look like this. Notice the first element (index: 0) is on the bottom: .. code-block:: none Element 1 Faces: * (nodes 3-2) 1 / \ 0 (nodes 1-3) / \ *-----* 2 (nodes 2-1) Element 0 Faces: (nodes 1-2) 1 *-----* \ / (nodes 2-0) 2 \ / 0 (nodes 0-1) * The nodes are created as a list of :math:`(x, y, z)` positions:: [(x0, y0, z0), (x1, y1, z1)...] which are transposed to lists of :math:`x`, :math:`y` and :math:`z`-positions:: [(x0, x1, x2...), (y0, y1, y2...)...] and passed to the :math:`(x, y, z)` arrays. The nodemap, or connectivity list, is given as an array of dimensions :math:`(N, D)` where :math:`N` is the number of elements and :math:`D` is the number of nodes per element. The order of the node locations determines the indices used when specifying the connectivity list. The Nodemap can be set individually and separately or all at once as shown here: .. code-block:: python :emphasize-lines: 39 import tecplot as tp from tecplot.constant import * # Triangle 0 nodes0 = ( (0, 0, 0 ), (1, 0, 0.5), (0, 1, 0.5)) scalar_data0 = (0, 1, 2) conn0 = ((0, 1, 2),) neighbors0 = ((None, 0, None),) neighbor_zones0 = ((None, 1, None),) # Triangle 1 nodes1 = ( (1, 0, 0.5), (0, 1, 0.5), (1, 1, 1 )) scalar_data1 = (1, 2, 3) conn1 = ((0, 1, 2),) neighbors1 = ((0, None, None),) neighbor_zones1 = ((0, None, None),) # Create the dataset and zones ds = tp.active_frame().create_dataset('Data', ['x','y','z','s']) z0 = ds.add_fe_zone(ZoneType.FETriangle, name='FE Triangle Float (3,1) Nodal 0', num_points=len(nodes0), num_elements=len(conn0), face_neighbor_mode=FaceNeighborMode.GlobalOneToOne) z1 = ds.add_fe_zone(ZoneType.FETriangle, name='FE Triangle Float (3,1) Nodal 1', num_points=len(nodes1), num_elements=len(conn1), face_neighbor_mode=FaceNeighborMode.GlobalOneToOne) # Fill in and connect first triangle z0.values('x')[:] = [n[0] for n in nodes0] z0.values('y')[:] = [n[1] for n in nodes0] z0.values('z')[:] = [n[2] for n in nodes0] z0.nodemap[:] = conn0 z0.values('s')[:] = scalar_data0 # Fill in and connect second triangle z1.values('x')[:] = [n[0] for n in nodes1] z1.values('y')[:] = [n[1] for n in nodes1] z1.values('z')[:] = [n[2] for n in nodes1] z1.nodemap[:] = conn1 z1.values('s')[:] = scalar_data1 # Set face neighbors z0.face_neighbors.set_neighbors(neighbors0, neighbor_zones0, obscures=True) z1.face_neighbors.set_neighbors(neighbors1, neighbor_zones1, obscures=True) ### Setup a view of the data plot = tp.active_frame().plot(PlotType.Cartesian3D) plot.activate() plot.contour(0).colormap_name = 'Sequential - Yellow/Green/Blue' plot.contour(0).colormap_filter.distribution = ColorMapDistribution.Continuous for ax in plot.axes: ax.show = True plot.show_mesh = False plot.show_contour = True plot.show_edge = True plot.use_translucency = True # View parameters obtained interactively from Tecplot 360 plot.view.distance = 10 plot.view.width = 2 plot.view.psi = 80 plot.view.theta = 30 plot.view.alpha = 0 plot.view.position = (-4.2, -8.0, 2.3) fmaps = plot.fieldmaps() fmaps.surfaces.surfaces_to_plot = SurfacesToPlot.All fmaps.effects.surface_translucency = 40 # Turning on mesh, we can see all the individual triangles plot.show_mesh = True fmaps.mesh.line_pattern = LinePattern.Dashed plot.contour(0).levels.reset_to_nice() tp.export.save_png('fe_triangles1.png', 600, supersample=3) .. figure:: /_static/images/fe_triangles1.png :width: 300px :figwidth: 300px """ def __init__(self, zone): self.zone = zone super().__init__(self._native_reference()) @lock() def _native_reference(self, writable=False): _dispatch = { True: _tecutil.DataNodeGetWritableRef, False: _tecutil.DataNodeGetReadableRef} with self.zone.dataset.frame.activated(): return _dispatch[writable](self.zone.index + 1) @lock() def _raw_pointer(self, writable=False): if _tecutil_connector.connected: msg = 'raw pointer access only available in batch-mode' raise TecplotLogicError(msg) _dispatch = { True: { c_int32: _tecutil.DataNodeGetWritableRawPtrByRef, c_int64: _tecutil.DataNodeGetWritableRawPtrByRef64}, False: { c_int32: _tecutil.DataNodeGetReadableRawPtrByRef, c_int64: _tecutil.DataNodeGetReadableRawPtrByRef64} } return _dispatch[writable][self.c_type](self) def _raw_array(self, writable=False): ptr = self._raw_pointer(writable) return cast(ptr, POINTER(self.c_type * self.size)).contents @property def array(self): r"""`list`-like array: Flattened array accessor for this nodemap. The nodemap is normally dimensioned by :math:`(N_e, N_{npe})` where :math:`N_e` is the number of elements and :math:`N_{npe}` is the number of nodes per element. This property represents a flattened view into the array which is of length :math:`N_e \times N_{npe}`. This may be more convenient than flattening the array in your script using a looping construct. Standard Python list slicing works for both fetching values and assignments. Example usage:: >>> nmap = dataset.zone('My Zone').nodemap >>> nmap.array[:] = mydata >>> print(nmap.array[:10]) [1, 10, 8, 0, 5, 18, 6, 12, 18, 11] """ return NodemapArray(self.zone) @lock() def alloc(self): """Allocates the internal space needed to store the Nodemap. This method is used in conjunction with deferred nodemap creation and is not needed with load-on-demand or normal zone creation methods. """ with self.zone.dataset.frame.activated(): if not _tecutil.DataNodeAlloc(self.zone.index + 1): raise TecplotSystemError() def __eq__(self, other): self_addr = addressof(cast(self, POINTER(c_int64)).contents) other_addr = addressof(cast(other, POINTER(c_int64)).contents) return self_addr == other_addr def __ne__(self, other): return not (self == other) def __len__(self): return self.zone.num_elements def __iter__(self): self._current_index = -1 self._current_length = len(self) return self def __next__(self): self._current_index = self._current_index + 1 if self._current_index < self._current_length: return self.__getitem__(self._current_index) else: del self._current_index del self._current_length raise StopIteration def next(self): # if sys.version_info < (3,) return self.__next__()
[docs] @contextmanager def assignment(self): """Context manager for assigning to the nodemap. When setting values to the nodemap, a `state change` is emitted to the engine after every statement. This can degrade performance if in the script the nodemap is being set many times. This context provides a way to suspend the state change notification until all assignments have been completed. In the following example, the state change is emitted only after the ``nodemap.assignment()`` context exits:: >>> nodemap = dataset.zone('My Zone').nodemap >>> with nodemap.assignment(): ... for elem, nodes in enumerate(mydata): ... nodemap[elem] = nodes """ yield session.connectivity_altered(self.zone)
@property def shape(self): r"""`tuple` of `integers <int>`: Shape of the nodemap array. .. note:: This property is read-only. This is defined by the zone type and is equal to :math:`(N_e, N_{npe})` where :math:`N_e` is the number of elements and :math:`N_{npe}` is the number of nodes per element. Example usage:: >>> print(dataset.zone(0).nodemap.shape) (1024, 4) """ return (self.zone.num_elements, self.num_points_per_element) @property def size(self): r"""`int`: Total number of nodes stored in the nodemap array. .. note:: This property is read-only. This is defined by the zone type and is equal to :math:`N_e \times N_{npe}` where :math:`N_e` is the number of elements and :math:`N_{npe}` is the number of nodes per element. Example usage:: >>> print(dataset.zone(0).nodemap.shape) (1024, 4) >>> print(dataset.zone(0).nodemap.size) 4096 """ return self.zone.num_elements * self.num_points_per_element @property def c_type(self): """`ctypes.c_int32` or `ctypes.c_int64`: The underlying data type for this nodemap. .. note:: This property is read-only. This is the `ctypes` integer type used by the Tecplot Engine to store the nodemap data. This is used internally and is not normally needed for simple nodemap access. """ _ctypes = { OffsetDataType.OffsetDataType_32Bit: c_int32, OffsetDataType.OffsetDataType_64Bit: c_int64} data_type = _tecutil.DataNodeGetRawItemType(self) return _ctypes[data_type] @property def num_points_per_element(self): r"""`int`: Points per element for classic finite-element zones. .. note:: This property is read-only. The number of points (also known as nodes) per finite-element is determined from the ``zone_type`` parameter. The following table shows the number of points per element for the available zone types along with the resulting shape of the nodemap based on the number of points specified (:math:`N`): ============== ============== ================ Zone Type Points/Element Nodemap Shape ============== ============== ================ ``FELineSeg`` 2 :math:`(N, 2 N)` ``FETriangle`` 3 :math:`(N, 3 N)` ``FEQuad`` 4 :math:`(N, 4 N)` ``FETetra`` 4 :math:`(N, 4 N)` ``FEBrick`` 8 :math:`(N, 8 N)` ============== ============== ================ Example usage:: >>> zone = dataset.zone('My Zone') >>> print(zone.zone_type) ZoneType.FETriangle >>> print(zone.nodemap.num_points_per_element) 3 """ return _tecutil.DataNodeGetNodesPerElem(self) def __getitem__(self, i): """Access the nodemap by elements. Parameters: i (`int` or `slice`): Element(s) to fetch from the nodemap. """ ppe = self.num_points_per_element if isinstance(i, slice): s = filled_slice(i, len(self)) nelems = s.stop - s.start start = (s.start * ppe) stop = (s.stop * ppe) arr = self.array[start:stop] elems = list(range(nelems))[::s.step] return [arr[e * ppe:(e + 1) * ppe] for e in elems] else: return self.array[i * ppe:(i + 1) * ppe] def __setitem__(self, i, nodes): """Modify the nodemap by elements. Parameters: i (`int` or `slice`): Element(s) to modify in the nodemap. """ ppe = self.num_points_per_element if isinstance(i, slice): s = filled_slice(i, len(self)) if s.step == 1: a = s.start * ppe b = s.stop * ppe self.array[a:b] = list(it.chain.from_iterable(nodes)) else: with self.assignment(): for i, n in zip(range(s.start, s.stop, s.step), nodes): self[i] = n else: self.array[i * ppe:(i + 1) * ppe] = nodes
[docs] def num_elements(self, node): """The number of elements that use a given node. Parameters: node: (`int`): Zero-based index of a node. Returns: `int` - The number of elements that use this node. Example usage:: >>> nodemap = dataset.zone('My Zone').nodemap >>> nodemap.num_elements(3) 8 """ return Elementmap(self.zone).num_elements(node)
[docs] def element(self, node, offset): """The element containing a given node. Parameters: node (`int`): Zero-based index of a node. offset (`int`): Zero-based index of the element that uses the given node. Returns: `int` - Zero-based index of the element. Example usage:: >>> nodemap = dataset.zone('My Zone').nodemap >>> print(nodemap.element(3, 7)) 324 """ return Elementmap(self.zone).element(node, offset)
class NodemapArray(Nodemap): def __len__(self): return self.size @property def shape(self): return (len(self),) @lock() def __getitem__(self, i): """Access the underlying nodemap as 1D array.""" if isinstance(i, slice): s = filled_slice(i, len(self)) n = s.stop - s.start arr = (self.c_type * n)() _tecutil.DataNodeArrayGetByRef(self, s.start + 1, n, arr) for i in range(len(arr)): arr[i] -= 1 return arr[::s.step] else: elem, node = divmod(i, self.num_points_per_element) return _tecutil.DataNodeGetByRef(self, elem + 1, node + 1) - 1 @lock() def __setitem__(self, i, nodes): """Modify the underlying nodemap as 1D array.""" _dispatch = { c_int32: _tecutil.DataNodeArraySetByRef, c_int64: _tecutil.DataNodeArraySetByRef64} data_ctype = self.c_type ref = self._native_reference(writable=True) with self.assignment(): if isinstance(i, slice): s = filled_slice(i, len(self)) if s.step == 1: n = s.stop - s.start try: import numpy as np nparr = np.asarray(nodes, dtype=data_ctype) + 1 ptarr = nparr.ctypes.data_as(POINTER(data_ctype)) arr = (data_ctype * n).from_address(addressof(ptarr.contents)) except ImportError: msg = textwrap.dedent('''\ Falling back to using basic Python for data operations. If installed, PyTecplot will make use of Numpy where appropriate for significant perfomance gains. ''') log.warning(msg) arr = (data_ctype * n)(*[nd + 1 for nd in nodes]) if __debug__: if min(arr) < 1 or self.zone.num_points < max(arr): raise TecplotIndexError log.debug(textwrap.dedent('''\ Nodemap Assignment: offset: {} array({}): {}''').format(s.start + 1, n, array_to_str(arr))) _dispatch[data_ctype](ref, s.start + 1, n, arr) else: ppe = self.num_points_per_element for i, n in zip(range(s.start, s.stop, s.step), nodes): elem, node = divmod(i, ppe) _tecutil.DataNodeSetByRef(ref, elem + 1, node + 1, n + 1) else: ppe = self.num_points_per_element elem, node = divmod(i, ppe) _tecutil.DataNodeSetByRef(ref, elem + 1, node + 1, nodes + 1)