import itertools as it
import logging
import textwrap
from contextlib import contextmanager
from ctypes import addressof, cast, c_int32, c_int64, c_void_p, POINTER
from ..tecutil import _tecutil, _tecutil_connector
from ..constant import *
from ..exception import *
from .. import session
from ..tecutil import array_to_str, lock, lock_attributes, filled_slice
log = logging.getLogger(__name__)
class Elementmap(c_void_p):
"""Nodemap reverse look-up."""
def __init__(self, zone):
self.zone = zone
super().__init__(self._native_reference())
@lock()
def _native_reference(self):
with self.zone.dataset.frame.activated():
return _tecutil.DataNodeToElemMapGetReadableRef(self.zone.index + 1)
def num_elements(self, node):
return _tecutil.DataNodeToElemMapGetNumElems(self, node + 1)
def element(self, node, offset):
return _tecutil.DataNodeToElemMapGetElem(self, node + 1, offset + 1) - 1
[docs]@lock_attributes
class Nodemap(c_void_p):
r"""Connectivity list definition and control for classic FE zones.
A nodemap holds the connectivity between nodes and elements for classic
finite-element zones. It is nominally a two-dimensionaly array of shape
:math:`(N_e, N_{npe})` where :math:`N_e` is the number of elements and
:math:`N_{npe}` is the number of nodes per element. The nodemap interface
has flat-array access through the `Nodemap.array` property as well as
reverse look-up with `Nodemap.num_elements()` and `Nodemap.element()`.
The nodemap behaves mostly like a two-dimensional array and can be treated
as such::
>>> nodemap = dataset.zone('My Zone').nodemap
>>> print('nodes in the first element:', nodemap[0])
nodes in the first element: [0, 1, 2, 3]
>>> print(nodemap[:3])
[[0, 1, 2, 3], [2, 3, 4, 5], [4, 5, 6, 7]]
>>> nodemap[0] = [6, 7, 8, 9]
>>> print(nodemap[0])
[6, 7, 8, 9]
Just for clarity, the nodemap indexing is by element first, then offset
within that element::
>>> element = 6
>>> offset = 2
>>> node = nodemap[element][offset]
>>> print(node)
21
Setting node indices must be done for an entire element because getting
values out of the nodemap and into Python always creates a copy. For
example, **this will not work**::
>>> nodemap = dataset.zone('My Zone').nodemap
>>> # Trying to set the 3rd node of the element 10
>>> nodemap[10][2] = 5 # Error: nodemap[10] returns a copy
To modify a single node in a nodemap, it is neccessary to do a round trip
like so::
nodemap = dataset.zone('My Zone').nodemap
>>> nodes = nodemap[10]
>>> nodes[2] = 5
>>> nodemap[10] = nodes # OK: setting whole element at a time
>>> print(nodemap[10])
[20, 21, 5, 22]
The following script creates a quad of two triangles from scratch using the
PyTecplot low-level data creation interface. The general steps are:
1. Setup the data
2. Create the tecplot dataset and variables
3. Create the zone
4. Set the node locations and connectivity lists
5. Set the (scalar) data
6. Write out data file
7. Adjust plot style and export image
The data created looks like this:
.. code-block:: none
Node positions (x,y,z):
(1,1,1)
3
/ \
/ \
(0,1,.5) 2-----1 (1,0,.5)
\ /
\ /
0
(0,0,0)
Breaking up the two triangular elements, the faces look like this. Notice the
first element (index: 0) is on the bottom:
.. code-block:: none
Element 1 Faces:
*
(nodes 3-2) 1 / \ 0 (nodes 1-3)
/ \
*-----*
2
(nodes 2-1)
Element 0 Faces:
(nodes 1-2)
1
*-----*
\ /
(nodes 2-0) 2 \ / 0 (nodes 0-1)
*
The nodes are created as a list of :math:`(x, y, z)` positions::
[(x0, y0, z0), (x1, y1, z1)...]
which are transposed to lists of :math:`x`, :math:`y` and :math:`z`-positions::
[(x0, x1, x2...), (y0, y1, y2...)...]
and passed to the :math:`(x, y, z)` arrays. The nodemap, or connectivity list,
is given as an array of dimensions :math:`(N, D)` where :math:`N` is the number
of elements and :math:`D` is the number of nodes per element. The order of the
node locations determines the indices used when specifying the connectivity
list. The Nodemap can be set individually and separately or all at once as
shown here:
.. code-block:: python
:emphasize-lines: 39
import tecplot as tp
from tecplot.constant import *
# Triangle 0
nodes0 = (
(0, 0, 0 ),
(1, 0, 0.5),
(0, 1, 0.5))
scalar_data0 = (0, 1, 2)
conn0 = ((0, 1, 2),)
neighbors0 = ((None, 0, None),)
neighbor_zones0 = ((None, 1, None),)
# Triangle 1
nodes1 = (
(1, 0, 0.5),
(0, 1, 0.5),
(1, 1, 1 ))
scalar_data1 = (1, 2, 3)
conn1 = ((0, 1, 2),)
neighbors1 = ((0, None, None),)
neighbor_zones1 = ((0, None, None),)
# Create the dataset and zones
ds = tp.active_frame().create_dataset('Data', ['x','y','z','s'])
z0 = ds.add_fe_zone(ZoneType.FETriangle,
name='FE Triangle Float (3,1) Nodal 0',
num_points=len(nodes0), num_elements=len(conn0),
face_neighbor_mode=FaceNeighborMode.GlobalOneToOne)
z1 = ds.add_fe_zone(ZoneType.FETriangle,
name='FE Triangle Float (3,1) Nodal 1',
num_points=len(nodes1), num_elements=len(conn1),
face_neighbor_mode=FaceNeighborMode.GlobalOneToOne)
# Fill in and connect first triangle
z0.values('x')[:] = [n[0] for n in nodes0]
z0.values('y')[:] = [n[1] for n in nodes0]
z0.values('z')[:] = [n[2] for n in nodes0]
z0.nodemap[:] = conn0
z0.values('s')[:] = scalar_data0
# Fill in and connect second triangle
z1.values('x')[:] = [n[0] for n in nodes1]
z1.values('y')[:] = [n[1] for n in nodes1]
z1.values('z')[:] = [n[2] for n in nodes1]
z1.nodemap[:] = conn1
z1.values('s')[:] = scalar_data1
# Set face neighbors
z0.face_neighbors.set_neighbors(neighbors0, neighbor_zones0, obscures=True)
z1.face_neighbors.set_neighbors(neighbors1, neighbor_zones1, obscures=True)
### Setup a view of the data
plot = tp.active_frame().plot(PlotType.Cartesian3D)
plot.activate()
plot.contour(0).colormap_name = 'Sequential - Yellow/Green/Blue'
plot.contour(0).colormap_filter.distribution = ColorMapDistribution.Continuous
for ax in plot.axes:
ax.show = True
plot.show_mesh = False
plot.show_contour = True
plot.show_edge = True
plot.use_translucency = True
# View parameters obtained interactively from Tecplot 360
plot.view.distance = 10
plot.view.width = 2
plot.view.psi = 80
plot.view.theta = 30
plot.view.alpha = 0
plot.view.position = (-4.2, -8.0, 2.3)
fmaps = plot.fieldmaps()
fmaps.surfaces.surfaces_to_plot = SurfacesToPlot.All
fmaps.effects.surface_translucency = 40
# Turning on mesh, we can see all the individual triangles
plot.show_mesh = True
fmaps.mesh.line_pattern = LinePattern.Dashed
plot.contour(0).levels.reset_to_nice()
tp.export.save_png('fe_triangles1.png', 600, supersample=3)
.. figure:: /_static/images/fe_triangles1.png
:width: 300px
:figwidth: 300px
"""
def __init__(self, zone):
self.zone = zone
super().__init__(self._native_reference())
@lock()
def _native_reference(self, writable=False):
_dispatch = {
True: _tecutil.DataNodeGetWritableRef,
False: _tecutil.DataNodeGetReadableRef}
with self.zone.dataset.frame.activated():
return _dispatch[writable](self.zone.index + 1)
@lock()
def _raw_pointer(self, writable=False):
if _tecutil_connector.connected:
msg = 'raw pointer access only available in batch-mode'
raise TecplotLogicError(msg)
_dispatch = {
True: {
c_int32: _tecutil.DataNodeGetWritableRawPtrByRef,
c_int64: _tecutil.DataNodeGetWritableRawPtrByRef64},
False: {
c_int32: _tecutil.DataNodeGetReadableRawPtrByRef,
c_int64: _tecutil.DataNodeGetReadableRawPtrByRef64}
}
return _dispatch[writable][self.c_type](self)
def _raw_array(self, writable=False):
ptr = self._raw_pointer(writable)
return cast(ptr, POINTER(self.c_type * self.size)).contents
@property
def array(self):
r"""`list`-like array: Flattened array accessor for this nodemap.
The nodemap is normally dimensioned by :math:`(N_e, N_{npe})` where
:math:`N_e` is the number of elements and :math:`N_{npe}` is the number
of nodes per element. This property represents a flattened view into
the array which is of length :math:`N_e \times N_{npe}`. This may be
more convenient than flattening the array in your script using a
looping construct.
Standard Python list slicing works for both fetching values and
assignments. Example usage::
>>> nmap = dataset.zone('My Zone').nodemap
>>> nmap.array[:] = mydata
>>> print(nmap.array[:10])
[1, 10, 8, 0, 5, 18, 6, 12, 18, 11]
"""
return NodemapArray(self.zone)
@lock()
def alloc(self):
"""Allocates the internal space needed to store the Nodemap.
This method is used in conjunction with deferred nodemap creation and
is not needed with load-on-demand or normal zone creation methods.
"""
with self.zone.dataset.frame.activated():
if not _tecutil.DataNodeAlloc(self.zone.index + 1):
raise TecplotSystemError()
def __eq__(self, other):
self_addr = addressof(cast(self, POINTER(c_int64)).contents)
other_addr = addressof(cast(other, POINTER(c_int64)).contents)
return self_addr == other_addr
def __ne__(self, other):
return not (self == other)
def __len__(self):
return self.zone.num_elements
def __iter__(self):
self._current_index = -1
self._current_length = len(self)
return self
def __next__(self):
self._current_index = self._current_index + 1
if self._current_index < self._current_length:
return self.__getitem__(self._current_index)
else:
del self._current_index
del self._current_length
raise StopIteration
def next(self): # if sys.version_info < (3,)
return self.__next__()
[docs] @contextmanager
def assignment(self):
"""Context manager for assigning to the nodemap.
When setting values to the nodemap, a `state change` is emitted to the
engine after every statement. This can degrade performance if in the
script the nodemap is being set many times. This context provides a way
to suspend the state change notification until all assignments have
been completed. In the following example, the state change is emitted
only after the ``nodemap.assignment()`` context exits::
>>> nodemap = dataset.zone('My Zone').nodemap
>>> with nodemap.assignment():
... for elem, nodes in enumerate(mydata):
... nodemap[elem] = nodes
"""
yield
session.connectivity_altered(self.zone)
@property
def shape(self):
r"""`tuple` of `integers <int>`: Shape of the nodemap array.
.. note:: This property is read-only.
This is defined by the zone type and is equal to :math:`(N_e, N_{npe})`
where :math:`N_e` is the number of elements and :math:`N_{npe}` is the
number of nodes per element. Example usage::
>>> print(dataset.zone(0).nodemap.shape)
(1024, 4)
"""
return (self.zone.num_elements, self.num_points_per_element)
@property
def size(self):
r"""`int`: Total number of nodes stored in the nodemap array.
.. note:: This property is read-only.
This is defined by the zone type and is equal to :math:`N_e \times
N_{npe}` where :math:`N_e` is the number of elements and
:math:`N_{npe}` is the number of nodes per element. Example usage::
>>> print(dataset.zone(0).nodemap.shape)
(1024, 4)
>>> print(dataset.zone(0).nodemap.size)
4096
"""
return self.zone.num_elements * self.num_points_per_element
@property
def c_type(self):
"""`ctypes.c_int32` or `ctypes.c_int64`: The underlying data type for this nodemap.
.. note:: This property is read-only.
This is the `ctypes` integer type used by the Tecplot Engine to store
the nodemap data. This is used internally and is not normally needed
for simple nodemap access.
"""
_ctypes = {
OffsetDataType.OffsetDataType_32Bit: c_int32,
OffsetDataType.OffsetDataType_64Bit: c_int64}
data_type = _tecutil.DataNodeGetRawItemType(self)
return _ctypes[data_type]
@property
def num_points_per_element(self):
r"""`int`: Points per element for classic finite-element zones.
.. note:: This property is read-only.
The number of points (also known as nodes) per finite-element is
determined from the ``zone_type`` parameter. The following table shows
the number of points per element for the available zone types along
with the resulting shape of the nodemap based on the number of points
specified (:math:`N`):
============== ============== ================
Zone Type Points/Element Nodemap Shape
============== ============== ================
``FELineSeg`` 2 :math:`(N, 2 N)`
``FETriangle`` 3 :math:`(N, 3 N)`
``FEQuad`` 4 :math:`(N, 4 N)`
``FETetra`` 4 :math:`(N, 4 N)`
``FEBrick`` 8 :math:`(N, 8 N)`
============== ============== ================
Example usage::
>>> zone = dataset.zone('My Zone')
>>> print(zone.zone_type)
ZoneType.FETriangle
>>> print(zone.nodemap.num_points_per_element)
3
"""
return _tecutil.DataNodeGetNodesPerElem(self)
def __getitem__(self, i):
"""Access the nodemap by elements.
Parameters:
i (`int` or `slice`): Element(s) to fetch from the
nodemap.
"""
ppe = self.num_points_per_element
if isinstance(i, slice):
s = filled_slice(i, len(self))
nelems = s.stop - s.start
start = (s.start * ppe)
stop = (s.stop * ppe)
arr = self.array[start:stop]
elems = list(range(nelems))[::s.step]
return [arr[e * ppe:(e + 1) * ppe] for e in elems]
else:
return self.array[i * ppe:(i + 1) * ppe]
def __setitem__(self, i, nodes):
"""Modify the nodemap by elements.
Parameters:
i (`int` or `slice`): Element(s) to modify in the
nodemap.
"""
ppe = self.num_points_per_element
if isinstance(i, slice):
s = filled_slice(i, len(self))
if s.step == 1:
a = s.start * ppe
b = s.stop * ppe
self.array[a:b] = list(it.chain.from_iterable(nodes))
else:
with self.assignment():
for i, n in zip(range(s.start, s.stop, s.step), nodes):
self[i] = n
else:
self.array[i * ppe:(i + 1) * ppe] = nodes
[docs] def num_elements(self, node):
"""The number of elements that use a given node.
Parameters:
node: (`int`): Zero-based index of a node.
Returns:
`int` - The number of elements that use this node.
Example usage::
>>> nodemap = dataset.zone('My Zone').nodemap
>>> nodemap.num_elements(3)
8
"""
return Elementmap(self.zone).num_elements(node)
[docs] def element(self, node, offset):
"""The element containing a given node.
Parameters:
node (`int`): Zero-based index of a node.
offset (`int`): Zero-based index of the element that uses
the given node.
Returns:
`int` - Zero-based index of the element.
Example usage::
>>> nodemap = dataset.zone('My Zone').nodemap
>>> print(nodemap.element(3, 7))
324
"""
return Elementmap(self.zone).element(node, offset)
class NodemapArray(Nodemap):
def __len__(self):
return self.size
@property
def shape(self):
return (len(self),)
@lock()
def __getitem__(self, i):
"""Access the underlying nodemap as 1D array."""
if isinstance(i, slice):
s = filled_slice(i, len(self))
n = s.stop - s.start
arr = (self.c_type * n)()
_tecutil.DataNodeArrayGetByRef(self, s.start + 1, n, arr)
for i in range(len(arr)):
arr[i] -= 1
return arr[::s.step]
else:
elem, node = divmod(i, self.num_points_per_element)
return _tecutil.DataNodeGetByRef(self, elem + 1, node + 1) - 1
@lock()
def __setitem__(self, i, nodes):
"""Modify the underlying nodemap as 1D array."""
_dispatch = {
c_int32: _tecutil.DataNodeArraySetByRef,
c_int64: _tecutil.DataNodeArraySetByRef64}
data_ctype = self.c_type
ref = self._native_reference(writable=True)
with self.assignment():
if isinstance(i, slice):
s = filled_slice(i, len(self))
if s.step == 1:
n = s.stop - s.start
try:
import numpy as np
nparr = np.asarray(nodes, dtype=data_ctype) + 1
ptarr = nparr.ctypes.data_as(POINTER(data_ctype))
arr = (data_ctype * n).from_address(addressof(ptarr.contents))
except ImportError:
msg = textwrap.dedent('''\
Falling back to using basic Python for data operations.
If installed, PyTecplot will make use of Numpy where
appropriate for significant perfomance gains.
''')
log.warning(msg)
arr = (data_ctype * n)(*[nd + 1 for nd in nodes])
if __debug__:
if min(arr) < 1 or self.zone.num_points < max(arr):
raise TecplotIndexError
log.debug(textwrap.dedent('''\
Nodemap Assignment:
offset: {}
array({}): {}''').format(s.start + 1, n,
array_to_str(arr)))
_dispatch[data_ctype](ref, s.start + 1, n, arr)
else:
ppe = self.num_points_per_element
for i, n in zip(range(s.start, s.stop, s.step), nodes):
elem, node = divmod(i, ppe)
_tecutil.DataNodeSetByRef(ref, elem + 1, node + 1,
n + 1)
else:
ppe = self.num_points_per_element
elem, node = divmod(i, ppe)
_tecutil.DataNodeSetByRef(ref, elem + 1, node + 1, nodes + 1)